The Synthesis and Molecular Structure of $9-H-9,9-(Et_3P)₂- $\mu_{10,11}$ -H-7,8,9-C₂PtB₈H₁₀$ and 9-H-9,10- $(Et_3P)_2$ -7,8,9- $C_2PtB_8H_9$; Pt(9) $\rightarrow B(10)$ Migration of a Triethyl**phosphine Ligand, and Evidence for the Redox Sequence** $Pf^0 \rightarrow Pf^W \rightarrow Pf^W$

By GEOFFREY K. BARKER, MICHAEL GREEN, F. GORDON **A.** STONE, ALAN J. WELCH,^ and WAYNE C. WOLSEY *(Department of Inorganic Chemistry, The University, Bristol* **BS8** lTS, and *tDepartment of Chemistry, The City University, London* EClV OHB)

Summary Reaction of $[Pt_2(\mu$ -cyclo-octa-1,5-diene) $(PEt_3)_4]$ with 5,6-dicarba-nido-decaborane affords 9-H-9,9-(Et₃P)₂- $\mu_{10,11}$ -H-7,8,9-C₂PtB₈H₁₀, which on pyrolysis (100 °C) loses H_2 and forms 9-H-9,10- $(Et_3P)_2$ -7,8,9- $C_2PtB_8H_9$; the structures of these compounds have been determined by X-ray crystallography.

WE have previously shown¹ that $[Pt_2(\mu\text{-cod})(\text{PEt}_3)_4]$ $(\text{cod} = \text{cyclo-octa-1,5-diene})$ reacts with $nido-2,3-C_2B_4H_8$ to afford $[nido-\mu_{4,15}-\{trans-(Et_3P)_2Pt(H)\}-\mu_{5,6}-H-2,3-C_2B_4H_6],$ which on pyrolysis loses a molecule of hydrogen and forms a closo-platinacarbaborane. In attempting to extend this synthetic strategy we have examined the corresponding reaction with **5,6-dicarba-nido-decaborane** and have observed an unusual sequence of reactions.

A diethyl ether solution of $[Pt_2(\mu\text{-cod})(\text{PEt}_3)_4]$ reacts at room temperature with $nido-5.6-C_2B_8H_{12}$ to form a tan crystalline complex **(1)** (70% yield, m.p. 104-106 "C, **Vpt-H** 2 010s and **~B-H** 2 **555s, 2** 520vs, and 2 494s cm-l; n.m.r.: ³¹P (rel. extn. H₃PO₄) (CD₃C₆D₅; -80 °C), δ, 3.9

[d, $J(PtP)$ 2 435, $J(PP)$ 22 Hz] and -7.2 p.p.m. [d, $J(PtP)$] 2 349, $J(PP)$ 22 Hz]; ¹¹B, (rel. extn. BF₃ Et₂O) (C₆D₆; 25 °C), δ , $8.9(2)$, $-11.9(2)$, -22.2 , and $-26.8(4)$ p.p.m.}. When complex **(1)** was heated (100 "C; 1 h) in toluene solution a molar equivalent of molecular hydrogen was evolved and a red crystalline species was formed in high yield *(80%).* Recrystallisation from diethyl ether afforded **(2)** (m.p. 116 *"c,* **Vpt-H 2** 115m and **VB-H** 2 560m, **2** 514s, 2 480(sh), and 2 465m cm⁻¹; n.m.r.: ¹H (C₆D₆; 25 °C), τ , 17.5 [dd, Pt-H, $J(PH)$ 24, $J(P^tH)$ 16, $J(PtH)$ 600 Hz]; ³¹P (CD₃C₆D₅; -70 °C), δ , 17.2 [*J*(PtP) 2 775 Hz] and 9.6 p.p.m. [*J*(PtP) 95 Hz]; ¹¹B (C₆D₆; +100 °C), δ , 8.8(3), 0.6(1), -13.7(2), and $-22.5(2)$ p.p.m. }.

The structural identities of **(1)** and **(2)** were established by single crystal X -ray diffraction studies.

crystal data: (1), $C_{14}H_{42}B_8P_2Pt$, $M = 554.00$, orthorhombic, $a = 14.825(4)$, $b = 10.1367(13)$, $c = 16.1193(15)$ Å, $U = 2422.4 \text{ Å}^3$, $Z = 4$, $D_c = 1.519 \text{ g cm}^{-3}$, $\mu(\text{Mo-K}_{\alpha}) =$ 58.6 cm⁻¹, space group $P2_12_12_1$; 3 303 significant reflections, $F \geq 2.0\sigma(F)$, to θ_{max} 30° (Mo- K_{α}) were measured on an

Enraf-Nonius CAD $\bf{4}$ diffractometer. (2), $\rm{C}_{14}H_{40}B_8P_9P_t$, $M = 551.98$, monoclinic, $a = 9.7813(16)$, $b = 12.312(3)$, $c = 20.519(3)$ Å, $\beta = 99.053(16)^\circ$, $U = 2.440.2$ Å³, $Z = 4$, $D_c = 1.503$, μ (Mo- K_{α}) = 56.4 cm⁻¹, space group *P2₁/c*; 3 192 reflections were measured (CAD 4) to θ_{max} 25°.

Both structures were solved by conventional Patterson and Fourier methods, and refined by least-squares to current R values of 0.058 and 0.060 respectively.[†] Cage carbon atoms were identified *via* internuclear separations and thermal parameters, having been refined as boron. Figures **1** and 2 show perspective molecular views, and list important molecular parameters.

FIGURE 1. Molecular structure of 9-H-9,9-(Et₃P)₂- $\mu_{10:11}$ -H-7,8,9-
C₂PtB₈H₁₀, (1), with ethyl groups omitted for clarity: Pt(9)-P(1), $2.304(3)$; $Pt(9)-P(2)$, $2.364(3)$; $C(7)-C(8)$, $1.604(20)$; $C(8)-Pt(9)$,
 $2.141(10)$; $Pt(9)-B(10)$, $2.319(14)$; $B(10)-B(11)$, $1.804(24)$;
 $B(11)-C(7)$, $1.663(27)$; $Pt(9) \cdot \cdot \cdot C(7)$, 3.233 ; $Pt(9) \cdot \cdot \cdot B(11)$
 3.309 Å ${\rm (1)}_{(8), 1}$ Food(20);
B(10)-B(10);
B(10)-B(11),
3.233; Pt(9);
CCPtBB faces;

Both polyhedra contain open CCPtBB faces and may therefore be classified as *nido.* In neither case have we yet borane face. Nevertheless, it is clear from the geometries located the hydrogen atoms associated with the heteroabout Pt(9) that a single terminal hydrido function is present in both molecules, and in the Figures H(Pt) is terminally bound to all other polyhedral atoms, molecule **(1)** carries a μ -H function, whose probable location (based on comparative B-B distances) is bridging the $B(10)$ -**B(11)** edge. shown in idealised positions. In addition to the hydrogens

These studies therefore establish that direct insertion of a $[Pt(PEt₃)₂]$ fragment into the *nido*-carbaborane $5.6-C₂B₈$ -**HI,** involves incorporation of the metal into an expanded polyhedral framework to give **(1)** (see Scheme). This is in nido-2,3-C₂B₄H₄R₂ (R = H, Me), where the metal, having inserted into a μ -B-H-B function, simply occupies an contrast with the reaction between $[Pt_2(\mu\text{-}cod)(PEt_3)_4]$ and **(2)**

FIGURE 2. Molecular structure of 9-H-9,10-(Et₃P)₂-7,8,9-C₂Pt- B_8H_9 , (2), with ethyl groups omitted for clarity: $Pt(9)-P(1)$, $2.179(10)$; $\Pr(9) - B(10)$, $2.171(11)$; $B(10) - B(11)$, $1.684(17)$; $B(11) - C(7)$, $1.723(15)$; $Pt(9) \cdots C(7)$, 2.999 ; $Pt(9) \cdots B(11)$, 3.071 A. $2.293(3)$; B(10)-P(2), 1.917(12); C(7)-C(8), 1.477(15); C(8)-Pt(9),

SCHEME. $P = PEt_a$; $\bigcirc = BH$; $\bigcirc = CH$.

Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication. \$ Atomic co-ordinates for complexes **(1)** and **(2)** may be obtained on request from the Director of the Cambridge Crystallographic

J.C.S. **CHEM. COMM., 1980 629**

edge-bridging site in a non-expanded nido-cage.¹ Moreover, on thermolysis of **(1)** loss of 1 mol. equiv. of molecular hydrogen is accompanied by migration of one PEt_a function from $Pt(9)$ to $B(10)$. § It is likely that the hydrogen atoms 'lost' are those attached to $B(10)$ and bridging $B(10) - B(11)$ in **(l),** although with the present data it is not possible to comment on the identity of the migrating phosphine. The crystallographic labelling of $P(1)$ and $P(2)$ has no implied significance in this respect.

closo-octadecahedral, 26 and **24** electrons, respectively, are required for cage bonding, according to empirical electroncounting rules.3 This, in turn, leads to assigned metal oxidation states of $+4$ and $+2$ in (1) and (2), respectively. Hence we conclude that the overall sequence of reactions involves for a boron system the most unusual formal redox sequence $Pt^0 \rightarrow Pt^{IV} \rightarrow Pt^{II}$. Secondary evidence for the higher metal oxidation state in **(1)** is indicated by the Pt-B distances not involved in the changing open face. Thus

FIGURE 3. The open polyhedral faces of (i) (1), and (ii) (2).

neither face is planar, although that of **(1)** is substantially respectively, as **(1)** is transformed into **(2).** the flatter. This suggests² that, whilst the cage of (1) may We thank Dr. M. B. Hursthouse for diffractometer might be better considered as a highly distorted formally St. Paul, Minnesota, for study leave (W. C. W.). *closo*-octadecahedron in which the $Pt(9)-C(7)$ and $Pt(9)-$ B(11) connectivities have extended to non-bonding distances Thus, if complex **(1)** is nido-icosahedral and *(2)* formally *(Received,* 21st *March* 1980; *Corn.* 301.)

Figures 3(i) and 3(ii) are projections normal to the open $Pt(9)-B(4)$ [2.207(15) Å] and $Pt(9)-B(5)$ [2.190(18) Å] are faces of (1) and (2), respectively. Strictly speaking appreciably lengthened, to 2.240(12) and 2.255(10) appreciably lengthened, to $2.240(12)$ and $2.255(10)$ Å,

adequately be described as nido-icosahedral, that of **(2)** facilities, the S. R.C. for support, and Macalester College,

§ Migration of a triphenylphosphine ligand from nickel to a boron atom has been observed on thermolysis of $closo$ -[3,3-(PPh₃)₂-3,1,2-NiC₂B₉H₁₁ (S. B. Miller and M. F. Hawthorne, *J. Chem. Soc., Chem. Commun.*, 19

1 G. K. Barker, M. Green, T. P. Onak, F. G. A. Stone, C. B. Ungermann, and A. J. Welch, J. *Chem. Soc., Chem. Commun.,* **1978,** 169; G. K. Barker, M. Green, F. G. A. Stone, A. J. Welch, T. P. Onak, and G. Siwapanyoyos, *J. Chem. Soc., Dalton Trans.*, 1979, 1687.
² G. K. Barker, M. Green, J. L. Spencer, F. G. A. Stone, and A. J. Welch, *J. Chem. S*

1971, 792; K. Wade, Adv. *Inorg. Chem. Radiochem.,* **1976, 18, 1.**